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Abstract

Evolutionary algorithms has been recently used for prototype selection showing good results. An important problem

that we can find is the scaling up problem that appears evaluating the Evolutionary Prototype Selection algorithms in

large size data sets. In this paper, we offer a proposal to solve the drawbacks introduced by the evaluation of large size

data sets using evolutionary prototype selection algorithms. In order to do this we have proposed a combination of

stratified strategy and CHC as representative evolutionary algorithm model. This study includes a comparison between

our proposal and other non-evolutionary prototype selection algorithms combined with the stratified strategy. The

results show that stratified evolutionary prototype selection consistently outperforms the non-evolutionary ones, the

main advantages being: better instance reduction rates, higher classification accuracy and reduction in resources

consumption.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A machine learning model presents a training

set which is a collection of training examples called

prototypes or instances. The machine learning
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algorithm is tasked by generating a decision proce-

dure called a ‘‘classifier’’ used to predict the out-

come class of unseen test instances on the basis

of observing training instances. After the learning

process, the learning model is presented with addi-

tional input vectors, and the model must generalize

deciding what the output value should be for the

new test instance. The generalization is done, in
a large number of machine learning algorithms,

by evaluation of the distance between the input

vector and the stored exemplars. Exemplar-based
ed.
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learning models (Aha et al., 1991; Kibbler and

Aha, 1987; Wilson et al., 2000) must often decide

what exemplars to store for use during generaliza-

tion, in order to avoid excessive storage and time

complexity. In Prototype Selection (PS) we intend
to select the most promising examples to avoid

these drawbacks (see Fig. 1).

In the literature we can find several approaches

to PS, see Wilson et al. (2000) for a recent review.

Evolutionary Algorithms (EAs) (Back et al., 1997;

Goldberg, 1989) have been used to solve the PS

problem with promising results (Cano et al.,

2003; Kuncheva, 1995; Nakashina and Ishibuchi,
1998; Ravindra and Narasimha, 2001; Shinn-Ying

et al., 2002).

EAs are adaptive methods based on natural

evolution that may be used for search and optimi-

zation. We introduce CHC (Eshelman, 1991) as

representative and efficient EA model for PS (see

Cano et al., 2003).

The issue of scalability and the effect of increas-
ing the size of data are always present in PS. The

scaling up problem, due to large size data sets, pro-

duces excessive storage requirement, increases

times complexity and affects to generalization

accuracy, introducing noise (Angluin and Laird,

1987) and over fitting. In EAs we have to add to

these drawbacks the ones produced by the chro-

mosome�s size (Forrest and Mitchell, 1993) associ-
ated to the representation of the PS solution.

Large chromosome�s size increases the storage

requirement and time execution and reduces signif-
Prototype Selection 
Algorithm

Prototype Subset Selected (PSS) Classifier
1-Nearest Neighbour

Data Set (D)

Training Set (TR) Test Set (TS)

Fig. 1. Prototype Selection.
icantly the convergence capabilities of the

algorithm.

To avoid these drawbacks we propose a combi-

nation of EAs and the stratified strategy. In large

size data sets we cannot evaluate the algorithms
over the complete data set so the stratification is

a possible way to carry out the executions. Com-

bining the subset selected per strata we can obtain

the subset selected for the whole initial data set.

The stratification reduces the data set size for algo-

rithm runs, while EAs select the best local training

subset.

The aim of this paper is to study the combination
of stratification and EAs applied to large data sets.

Our proposal is compared with non-evolutionary

prototype selection algorithms following the strati-

fied strategy. To address this, we have carried out a

number of experiments with increasing complexity

and size of data sets.

In order to do this, this paper is set out as fol-

lows. In Section 2, we introduce the scaling up
problem and its effect on PS algorithms. Section

3 is dedicated to the combination of stratified

strategy and evolutionary PS algorithm, giving

details of how EAs can be applied to the PS prob-

lem in large size data sets. In Section 4 we explain

the methodology used in the experimentation. Sec-

tion 5 deals with the results and their analysis.

Finally, in Section 6, we point out our conclusions.
2. The scaling up problem

The majority of PS algorithms cannot deal with

large data sets. The basic nearest neighbor rule

(Cover and Hart, 1967; Wilson, 1972) presents sev-

eral shortcomings discussed in (Wilson and Marti-
nez, 2000). As main problems we have that it has

to store all of the training instances to carry out

the classification task, so it has large memory

requirements. It must search through all available

instances to classify a new input vector, so it is

slow during classification. These drawbacks are

increased by the size of the data set. In this sec-

tion we study the effect of the data set size in
both groups of algorithms, evolutionary and non-

evolutionary. The algorithms are briefly described

in Section 4.1.



J.R. Cano et al. / Pattern Recognition Letters 26 (2005) 953–963 955
To test the effect of increasing the data set size,

we have evaluated different size data sets. The

main difficulties they have to face are the

following:

• Efficiency. The efficiency of non-evolutionary

PS algorithms evaluated is at least of O(n2),

being n the number of instances in the data

set. There are another set of PS algorithms (like

Rnn in Gates, 1972; Snn in Ritter et al., 1975;

Shrink in Kibbler and Aha, 1987, etc.) but

most of them present an efficiency order much

greater than O(n2). Logically, when the size
grows, the time needed by each algorithm also

increases.

• Resources. Most of the algorithms assessed

need to have the complete data set stored in

memory to carry out their execution. If the size

of the data set was too big, the computer

would need to use the disk as swap memory.

This loss of resources has an adverse effect on
efficiency due to the increased access to the

disk.

• Generalization. Algorithms are affected in their

generalization capabilities due to the noise and

over fitting effect introduced by larger size data

sets.

• Representation. EAs are also affected by repre-

sentation, due to the size of their chromosomes.
When the size of these chromosomes is too big,

the algorithms experience convergence difficul-

ties, as well as costly computational time.

These drawbacks produce a considerable degra-

dation in the behavior of PS algorithms. There is a

group of them that cannot be applied due to its

efficiency (the case of Snn in Ritter et al., 1975
with O(n3)).

Algorithms evaluated directly to the whole lar-

ger data sets are unefficacy and unefficient.
3. Combination of stratified strategy and

evolutionary algorithms

To avoid the drawbacks associated to scaling

Up we led our study towards the hybrid algorithm

between stratified strategy and EA.
3.1. Evolutionary algorithms applied to prototype

selection

EAs have been applied to the PS problem,

because it can be considered as a search problem
(Cano et al., 2003; Kuncheva, 1995; Nakashina

and Ishibuchi, 1998; Ravindra and Narasimha,

2001; Shinn-Ying et al., 2002).

The application of EAs to PS is accomplished

by tackling two important issues: the specification

of the representation of the solutions and the def-

inition of the fitness function.
3.1.1. Representation

Let�s assume a data set denoted TR with n

instances. The search space associated with the

instance selection is constituted by all the subsets

of TR. Then, the chromosomes should represent

subsets of TR. This is accomplished by using a bin-

ary representation. A chromosome consists on the

sequence of n genes (one for each instance in TR)
with two possible states: 0 and 1. If the gene is 1,

then its associated instance is included in the sub-

set of TR represented by the chromosome. If it is 0,

then this does not occur.
3.1.2. Fitness function

Let PSS be a subset (see Fig. 1) of instances of

TR to evaluate and be coded by a chromosome.
We define a fitness function that combines two val-

ues: the classification performance (clas_per)

associated with PSS and the percentage of reduc-

tion (perc_red) of instances of PSS with regards

to TR:

FitnessðPSSÞ ¼ a � clas per

þ ð1� aÞ � perc red: ð1Þ

The 1-NN classifier is used for measuring the clas-

sification rate, clas_per, associated with PSS.

It denotes the percentage of correctly classified

objects from TR using only PSS to find the nearest

neighbour. For each object y in TR, the nearest

neighbour is searched for amongst those in the
set PSSn{y}. Whereas, perc_red is defined as:

perc red ¼ 100 � ðjTRj � jPSSjÞ=jTRj: ð2Þ
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The goal of the EAs is to maximize the fitness

function defined, i.e., maximize the classifica-

tion performance and minimize the number of

instances obtained. In the experiments presented

in this paper, we have considered the value
a = 0.5 in the fitness function, due to a previous

experiment in which we found the best trade-off

between precision and reduction with this value,

it was also used in (Cano et al., 2003).
3.2. Stratified strategy and prototype selection

The stratified strategy divides the initial data set
into disjoint strata with equal class distribution.

The prototypes are independent one of each other,

so the distribution of the data into strata will not

degrade their representation capabilities.

The number of strata will determine the size of

them. Using the proper number of strata we can

reduce significantly the training set size. This situ-

ation allows us to avoid the drawbacks suggested
in Section 2.

Following the stratified strategy, initial data set

D is divided into t disjoint sets Dj, strata of equal

size, D1,D2,. . ., and Dt. We maintain class distribu-

tion within each set in the partitioning process.

The test set TS will be the TR complementary

one in D.

TR ¼
[

j2J
Dj; J � f1; 2; . . . ; tg ð3Þ

TS ¼ D n TR ð4Þ

PS algorithms (classical or evolutionary ones) are

applied to each Dj obtaining a subset selected

DSj. The prototype selected set is obtained using

DSj (see Eq. (5)) and it is called Stratified Proto-

type Subset Selected (SPSS).

SPSS ¼
[

j2J
DSj; J � f1; 2; . . . ; tg ð5Þ

The last phase, where the DSj are being reunited, is

not time-consuming, as it does not present any

kind of additional processing. The time needed

for the stratified execution is the one associated

to the instance selection algorithm�s execution in

each strata.
4. Experimental methodology

We have carried out our study of the PS

problem using three size problems: medium, large

and huge. We try to evaluate the behavior of
the algorithms when the size of the problem

increases.

Section 4.1 is dedicated to describe the algo-

rithms which appear in the experiments. In Section

4.2 we introduce the data sets evaluated. Section

4.3 shows the stratification and partition of the

data sets that were considered, and finally, in Sec-

tion 4.4 we describe the table contents that report
the results.

4.1. Prototype selection algorithms for experiments

The algorithms studied can be divided in two

groups, depending of their evolutionary nature.

The algorithms selected are the most efficient ones

shown in (Cano et al., 2003).

4.1.1. Non-Evolutionary algorithms

In this section we present a summary of the

non-evolutionary PS algorithms included in this

study. The algorithms used are:

• Cnn (Hart, 1968)—It tries to find a consistent

subset, which correctly classifies all of the
remaining points in the sample set. However,

this algorithm will not find a minimal consistent

subset.

• Drop1 (Wilson and Martinez, 1997)—

Essentially, this rule tests to see if removing

an instance would degrade leave-one-out

cross-validation generalization accuracy, which

is an estimate of the true generalization ability
of the resulting classifier.

• Drop2 (Wilson and Martinez, 1997)—Drop2

changes the order of removal of instances. It ini-

tially sorts the instances in TR by the distance to

their nearest enemy (nearest instance belonging

to another class). Instances are then checked for

removal beginning at the instance furthest from

its nearest enemy. This tends to remove
instances furthest from the decision boundary

first, which in turn increases the chance of

retaining border points.



Table 4

Huge size data set

Data set Instances Features Classes

Kdd Cup�99 494022 41 23

Table 3

Large size data set

Data set Instances Features Classes

Adult 30132 14 2

Table 2

Medium size data sets

Data set Instances Features Classes

Pen-based recognition 10992 16 10

SatImage 6435 36 6

Thyroid 7200 21 3

Table 1

Algorithm�s parameters

Algorithm Parameters

Ib3 Acceptance level = 0.9, Drop level = 0.7

CHC Population = 50, Evaluations = 10000
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• Drop3 (Wilson and Martinez, 1997)—Drop3

uses a noise filtering pass before sorting the

instances in TR. This is done using the rule:

Any instance not classified by its k-nearest

neighbours is removed.
• Ib2 (Kibbler and Aha, 1987)—It is similar to

Cnn but using a different selection strategy.

• Ib3 (Kibbler and Aha, 1987)—It outperforms

Ib2 introducing the acceptable instance con-

cept to carry out the selection. The parameters

associated to Ib3 appear in Table 1.

4.1.2. Evolutionary algorithms

We have evaluated the CHC algorithm as repre-

sentative and efficient EA model.

During each generation the CHC (Eshelman,

1991) develops the following steps:

(1) It uses a parent population of size n to gener-

ate an intermediate population of n individu-
als, which are randomly paired and used to

generate n potential offspring.

(2) Then, a survival competition is held where the

best n chromosomes from the parent and off-

spring populations are selected to form the

next generation.

CHC also implements a form of heterogeneous
recombination using HUX, a special recombination

operator. HUX exchanges half of the bits that differ

between parents, where the bit position to be

exchanged is randomly determined. CHC also

employs a method of incest prevention. Before

applying HUX to two parents, the Hamming dis-

tance between them is measured. Only those par-

ents who differ from each other by some number
of bits (mating threshold) are mated. The initial

threshold is set at L/4, where L is the length of

the chromosomes. If no offspring are inserted into

the new population then the threshold is reduced

by 1.

No mutation is applied during the recombina-

tion phase. Instead, when the population con-

verges or the search stops making progress (i.e.,
the difference threshold has dropped to zero and

no new offspring are being generated which are

better than any members of the parent population)
the population is reinitialized to introduce new

diversity to the search. The chromosome repre-

senting the best solution found over the course

of the search is used as a template to re-seed the

population. Re-seeding of the population is
accomplished by randomly changing 35% of the

bits in the template chromosome to form each of

the other n � 1 new chromosomes in the popula-

tion. The search is then resumed.

Table 1 introduces the parameters associated

with the algorithms.

4.2. Data sets for experiments

To evaluate the behavior of the algorithms

applied in different size data sets, we have carried

out a number of experiments increasing complex-

ity and size of data sets. We have selected medium,

large and huge size data sets as we can see in

Tables 2–4 (these data sets can be found in the

UCI Repository in Merz and Murphy, 1996).
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Fig. 3. Prototype Selection Strategy in Stratified Ten fold cross

validation.
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4.3. Partitions and stratification: An specific model

We have evaluated each algorithm in a ten fold

cross validation process. In the validation process

TRi, i=1, . . ., 10 is a 90% of D and TSi its comple-
mentary 10% of D.

In our experiments we have executed the PS

algorithms following two perspectives for the ten

fold cross validation process.

In the first one, we have executed the PS algo-

rithms as we can see in Fig. 2. We call it classic

Ten fold cross validation (Tfcv classic). This

result will be used as reference versus the stratifica-
tion ones.

In Tfcv classic the subsets TRi and TSi,

i = 1,. . .,10 are obtained as the Eqs. (6) and (7)

indicate:

TRi ¼
[

j2J
Dj;

J ¼ fj=16 j6 b � ði� 1Þ and ði � bÞ þ 16 j6 tg
ð6Þ

TSi ¼ D n TRi ð7Þ

where t is the number of strata, and b is the num-

ber of strata grouped (b = t/10, to carry out the ten

fold cross validation).

Each PSSi is obtained by the PS algorithm

applied to TRi subset.

The second way is to execute the PS algorithms
in a stratified process as the Fig. 3 shows. We call
D DD D

Test Set (TS )i

Prototype Selection
Algorithm

Prototype Subset Selected (PSS )i Classifier
1-Nearest Neighbour

Data Set (D)

1 2 3 t

Training Set (TR )i

Fig. 2. Prototype Selection Strategy in Ten fold cross

validation.
it stratified ten fold cross validation (Tfcv

strat).

In Tfcv strat each TRi is defined as we can

see in Eq. (6), by means of the union of Dj subsets

(see Fig. 3).

In Tfcv strat (see Fig. 3) SPSSi is generated
using the DSj instead of Dj (see Eq. (8)).

SPSSi ¼
[

j2J
DSj;

J ¼fj=16 j6 b � ði�1Þ and ði �bÞþ16 j6 tg
ð8Þ

SPSSi contains the instances selected by PS

algorithms in TRi following the stratified strategy.

The subset TSi is defined by means the Eq. (7).

Both, TRi and TSi are generated in the same way

in Tfcv classic and Tfcv strat.
As example, considering t=10, the subsets for

each kind of validation process are presented in

Table 5.

For each data set we have employed the parti-

tions and number of strata that appear in Tables

6 and 7.

4.4. Table of results

In the following section we will present the

structure of tables where we present the results.

Our table shows the results obtained by the evo-

lutionary and non-evolutionary prototype selec-



Table 5

Stratified Ten fold cross validation subsets

TRi TSi SPSSi

i = 1 D2 [ D3 [ � � � [ D10 D1 DS2 [ DS3 [ � � � [ DS10

i = 2 D1 [ D3 [ � � � [ D10 D2 DS1 [ DS3 [ � � � [ DS10

. . . . . . . . . . . .

i = 10 D1 [ D2 [ � � � [ D9 D10 DS1 [ DS2 [ � � � [ DS9

Table 7

Stratification in large and huge size data sets

Adult Kdd Cup�99

t = 10 Strata t = 100 Strata

t = 50 Strata t = 200 Strata

t = 100 Strata t = 300 Strata

Table 6

Stratification in medium size data sets

Pen-based recognition SatImage Thyroid

t = 10 Strata t = 10 Strata t = 10 Strata

t = 30 Strata t = 30 Strata t = 30 Strata

Table 8

Results associated to Pen-based Recognition data set

Algorithm Ex.Tim Reduc.

(%)

Ac. Trn

(%)

Ac. Tst

(%)

1-NN Tfcv classic 66 99.36 99.39

Cnn Tfcv classic 4 98.04 84.85 85.69

Cnn Tfcv strat 10 0.20 91.81 93.78 95.43

Cnn Tfcv strat 30 0.07 82.48 97.51 98.63

Drop1 Tfcv classic 374 98.45 86.23 86.02

Drop1 Tfcv strat 10 2 99.86 57.14 22.00

Drop1 Tfcv strat 30 0.23 99.70 68.96 38.90

Drop2 Tfcv classic 318 97.69 91.03 91.06

Drop2 Tfcv strat 10 1.9 98.50 52.98 62.92

Drop2 Tfcv strat 30 0.27 95.37 81.83 78.08

Drop3 Tfcv classic 391 98.07 90.33 90.05

Drop3 Tfcv strat 10 2.1 99.66 53.12 40.91

Drop3 Tfcv strat 30 0.23 98.60 90.51 57.53

Ib2 Tfcv classic 2 98.49 74.20 75.04

Ib2 Tfcv strat 10 0.1 94.31 93.73 91.41

Ib2 Tfcv strat 30 0.03 88.34 96.25 97.80

Ib3 Tfcv classic 9 96.42 96.73 98.00

Ib3 Tfcv strat 10 0.2 88.34 92.95 98.44

Ib3 Tfcv strat 30 0.1 83.05 97.07 98.63

CHC Tfcv classic 18845 98.99 96.29 98.94

CHC Tfcv strat 10 127 96.65 98.85 97.35

CHC Tfcv strat 30 31 93.78 99.69 97.53
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tion algorithms, respectively. In order to observe

the level of robustness achieved by all the algo-

rithms, the table presents the average in the ten

fold cross validation process of the results offered

by each algorithm in the data sets evaluated. Each

column shows:

• The first column shows the name of the algo-
rithm. In this column the name is followed by

the sort of validation process Tfcv strat

and the number of strata, or Tfcv classic

meaning classic ten fold cross process.

• The second column contains the average execu-

tion time (in seconds) associated to each algo-

rithm. The algorithms have been run in a

Pentium 4, 2.4Ghz, 256 RAM, 40Gb HD.
• The third column shows the average reduction

percentage from the initial training sets.

• The fourth column contains the training accu-

racy associated to the prototype subset selected.

The accuracy is calculated by means of 1-NN.

• The fifth column contains the test accuracy of

the PS algorithms selection. This accuracy is

calculated by means of 1-NN.
5. Experimental results and analysis

This section shows the results and the analysis.

5.1. Experimental results

Tables 8–10 contain the results obtained in the

evaluation of Pen-based recognition, SatImage

and Thyroid data sets, respectively. Due to their

minor size we have developed the executions of

the PS algorithms following both Ten fold cross

validation procedures, classic and stratified one.

In Table 11, we present the results obtained in
the evaluation of Adult data set. In this table we

have introduced, when the resources consumption

permit us (in Cnn, Ib2 and Ib3 case), the evalua-

tion of the algorithm following the Tfcv clas-

sic and the Tfcv strat. We have included the

evaluation of 1-NN algorithm in the whole data

set to note the benefits obtained by the application

of our proposal.



Table 9

Results associated to SatImage data set

Algorithm Ex.Tim Reduc.

(%)

Ac. Trn

(%)

Ac. Tst

(%)

1-NN Tfcv classic 36 90.33 90.41

Cnn Tfcv classic 5 95.93 60.63 61.96

Cnn Tfcv strat 10 0.1 88.42 68.91 75.62

Cnn Tfcv strat 30 0.10 79.49 76.37 80.46

Drop1 Tfcv classic 206 93.66 84.29 81.68

Drop1 Tfcv strat 10 1.3 98.03 83.18 38.12

Drop1 Tfcv strat 30 0.13 97.89 86.20 30.69

Drop2 Tfcv classic 183 83.49 83.45 83.51

Drop2 Tfcv strat 10 1.2 83.55 58.21 79.53

Drop2 Tfcv strat 30 0.20 80.85 65.07 79.06

Drop3 Tfcv classic 301 93.25 87.93 81.03

Drop3 Tfcv strat 10 1.00 96.81 66.46 73.02

Drop3 Tfcv strat 30 0.13 96.65 71.14 57.65

Ib2 Tfcv classic 3 96.75 59.00 59.59

Ib2 Tfcv strat 10 0.20 91.87 72.15 66.87

Ib2 Tfcv strat 30 0.07 85.77 75.56 75.81

Ib3 Tfcv classic 22 84.66 84.51 86.45

Ib3 Tfcv strat 10 0.30 78.11 68.95 87.50

Ib3 Tfcv strat 30 0.10 73.71 77.40 87.90

CHC Tfcv classic 2479 99.06 89.45 89.67

CHC Tfcv strat 10 57 97.52 95.23 88.28

CHC Tfcv strat 30 30 94.32 97.19 89.76

Table 10

Results associated to Thyroid data set

Algorithm Ex.Tim Reduc.

(%)

Ac. Trn

(%)

Ac. Tst

(%)

1-NN Tfcv classic 28 92.87 92.74

Cnn Tfcv classic 3 98.00 92.50 92.86

Cnn Tfcv strat 10 0.10 90.72 73.13 90.66

Cnn Tfcv strat 30 0.02 84.32 76.47 89.58

Drop1 Tfcv classic 182 98.06 63.47 62.86

Drop1 Tfcv strat 10 1.00 99.21 80.39 90.25

Drop1 Tfcv strat 30 0.13 99.36 82.22 92.5

Drop2 Tfcv classic 143 87.54 91.37 91.15

Drop2 Tfcv strat 10 0.70 87.67 53.40 81.19

Drop2 Tfcv strat 30 0.13 86.25 61.94 81.25

Drop3 Tfcv classic 322 97.44 88.82 85.24

Drop3 Tfcv strat 10 0.80 99.45 80.55 84.81

Drop3 Tfcv strat 30 0.10 99.71 91.17 91.66

Ib2 Tfcv classic 2 98.11 92.53 92.89

Ib2 Tfcv strat 10 0.10 92.92 76.50 90.80

Ib2 Tfcv strat 30 0.01 85.41 76.58 89.58

Ib3 Tfcv classic 94 33.93 93.22 93.38

Ib3 Tfcv strat 10 0.50 38.62 93.11 92.33

Ib3 Tfcv strat 30 0.03 33.17 93.70 94.16

CHC Tfcv classic 2891 99.83 94.20 91.98

CHC Tfcv strat 10 54 99.44 88.25 94.01

CHC Tfcv strat 30 33 99.16 96.49 93.33
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Table 12, contains the results associated to Kdd

Cup�99 data set. This data set presents higher

number of characteristics and instances than the

previous data sets. This situation produces that

some algorithms like the Drop family, which need

more resources to be executed, cannot be

evaluated.

5.2. Analysis

The analysis of Tables 8–12 allow us to make

the following analysis according to different points

of views.

5.2.1. Efficiency

As we can see in the second column of the
tables, the stratified strategy reduces significatively

execution time. Depending on the number of

strata, this reduction allows us the execution of

more demanding resources algorithms or decreases
their evaluation time and resources needs. The

reduction in execution time in the CHC case has

to be highlighted. This reduction eliminates the

efficiency problem that appears in the case of

EAs applied to high size data sets.

In Table 11 dedicated to Adult data set, we can

take note that the most resources consuming algo-

rithms cannot be executed in Tfcv classic due
to the resources necessities it involves.

The same situation appears in Table 12, where

due to the dimension of this data set, some of

the non-evolutionary algorithms cannot be evalu-

ated in this case in anyone of the validation proc-

esses applied. We have mentioned this drawback in

Section 2. The second column in this table shows

the significant cost associated to the execution of
1-NN algorithm over the whole data set. It is obvi-

ous that any kind of reduction is needed to carry

out a successful use of this data set. A new reduc-

tion in execution time, due to stratified strategy,



Table 11

Results associated to Adult data set

Algorithm Ex.Tim Reduc.

(%)

Ac. Trn

(%)

Ac. Tst

(%)

1-NN Tfcv classic 24 79.34 79.24

Cnn Tfcv classic 4 99.21 26.40 26.56

Cnn Tfcv strat 10 1 97.34 35.37 32.02

Cnn Tfcv strat 50 0 93.69 66.51 57.42

Cnn Tfcv strat 100 0 90.09 64.42 58.27

Drop1 Tfcv strat 10 44 95.09 100.00 25.64

Drop1 Tfcv strat 50 1 94.59 100.00 24.96

Drop1 Tfcv strat 100 0 94.49 100.00 24.83

Drop2 Tfcv strat 10 48 70.33 27.71 61.30

Drop2 Tfcv strat 50 0 68.03 56.90 70.27

Drop2 Tfcv strat 100 0 66.96 59.31 71.85

Drop3 Tfcv strat 10 41 95.57 48.98 63.46

Drop3 Tfcv strat 50 0 95.34 64.83 71.19

Drop3 Tfcv strat 100 0 93.71 65.82 70.19

Ib2 Tfcv classic 2 99.94 25.20 25.14

Ib2 Tfcv strat 10 1 99.57 52.33 26.89

Ib2 Tfcv strat 50 0 98.66 74.72 45.68

Ib2 Tfcv strat 100 0 94.33 67.66 54.30

Ib3 Tfcv classic 210 98.66 74.72 45.68

Ib3 Tfcv strat 10 3 76.69 33.98 70.96

Ib3 Tfcv strat 50 0 73.48 63.93 74.36

Ib3 Tfcv strat 100 0 71.21 68.12 71.52

CHC Tfcv strat 10 20172 99.38 97.02 81.92

CHC Tfcv strat 50 48 98.34 93.66 80.17

CHC Tfcv strat 100 14 97.03 94.28 77.81

Table 12

Results associated to Kdd Cup�99 data set

Algorithm Ex.Tim Reduc.

(%)

Ac. Trn

(%)

Ac. Tst

(%)

1-NN Tfcv classic 18568 99.91 99.91

Cnn Tfcv strat 100 8 81.61 99.30 99.27

Cnn Tfcv strat 200 3 65.57 99.90 99.15

Cnn Tfcv strat 300 1 63.38 99.89 98.73

Ib2 Tfcv strat 100 7 82.01 97.90 98.19

Ib2 Tfcv strat 200 3 65.66 99.93 98.71

Ib2 Tfcv strat 300 2 60.31 99.89 99.03

Ib3 Tfcv strat 100 2 78.82 93.83 98.82

Ib3 Tfcv strat 200 0 98.27 98.37 98.93

Ib3 Tfcv strat 300 0 97.97 97.92 99.27

CHC Tfcv strat 100 1960 99.68 99.21 99.43

CHC Tfcv strat 200 418 99.48 99.92 99.23

CHC Tfcv strat 300 208 99.28 99.93 99.19
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appears in this data set. 1-NN needs 18568s, while

the selection by means of stratified CHC is done,
for example using 200 strata, in 418s.

As summary, we can point the following:

• Stratification strategy reduces significantly exe-

cution time.

• The non-evolutionary algorithms evaluated

improve the execution time of the evolutionary

ones. We have to study if they are efficacy as
well.
5.2.2. Reduction rates

The final subset selected following the stratified

strategy is slightly bigger than the one selected

using the algorithm without stratification in the
whole data set.
The best reduction rates are offered by the strat-

ified CHC, overcoming to non-evolutionary ones in
all size data sets.

5.2.3. Accuracy rates

The last column in the tables is dedicated to

study the classification capabilities associated to

the final subsets selected. As we can see, the non-

evolutionary algorithms (with stratification or

not) cannot improve the accuracy offered by the
1-NN (where 1-NN is evaluated in a Tfcv

classic).

The best algorithm in test accuracy rate is the

stratified CHC which presents rates similar than

obtained by 1-NN.

Having accuracy rate as goal we can point the

following:

• 1-NN applied to the whole data set offers the

best result in most of the data sets.

• Stratified CHC is the algorithm which presents

the accuracy rates with the best approximation

to the 1-NN ones in all data sets.
5.2.4. Balance efficacy–efficiency

Stratified CHC offers the best balance between ac-

curacy and reduction. It reduces the initial data set

approximately at 98% in all data sets, maintaining
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and improving the accuracy rate provided by 1-NN.

Stratified CHC presents the best results.

Non-evolutionary algorithms are faster than

Stratified CHC, but they presents smaller reduction

and accuracy rates. When the number of strata is
increased, the execution time is reduced.

Stratified CHC, in a huge data set like Kdd

Cup�99 (Table 12), presents the best balance

between accuracy and reduction rates. It reduces

the initial Kdd Cup�99 data set size (with 494022

instances) around the 99.5% (2470 instances in

the final subset selected), maintaining accuracy

rates near to 99.2%, in 208s.
Non-evolutionary algorithms following the

stratified strategy can be executed more efficiently.

The stratified execution reduces their resources

needs, but they don�t maintain their efficacy. They

don�t present a balanced behaviour between accu-

racy and reduction rates.

The CHC algorithm following a stratification

strategy outperforms non-evolutionary PS algo-
rithms, offering the best balance among resources

necessities, reduction and accuracy rates. It

decreases in all different data set the initial data

set around the 99%, maintaining the accuracy rate

similar than the one offered by 1-NN. The reduc-

tion in resources consumption induced by the

stratified strategy presents a good solution to the

scaling up problem, and improves the CHC effi-
ciency maintaining its efficacy.

Briefly summarizing this section, we can point:

• Non-evolutionary algorithms are more efficient

than evolutionary ones, but their result are

worse.

• Stratified CHC presents the best balance among

reduction rate, accuracy rate and execution
time.
6. Concluding remarks

This paper addressed the scaling up problem

involved when prototype selection algorithms are

applied in large size data sets. The proposal is to
combine a stratification strategy with the PS

algorithm.
An experimental study has been carried out to

compare the results of an EA model with the non-

evolutionary Prototype Selection ones, in medium,

large and huge size data sets, evaluating the draw-

backs introduced by the scaling up problem.
The main conclusions reached are as follows:

• The proper election in the number of strata

decreases significantly execution time and

resources consumption, maintaining the algo-

rithm�s behaviour in accuracy and reduction

rates.

• Stratification in non-evolutionary algorithms
reduces their resources needs, improving their

efficiency, but the EAs offer better results.

• Stratified CHC algorithm obtains best reduction

rates in the data sets evaluated. It significantly

reduces the size of the subset selected (>95%

in reduction rate).

• Stratified CHC maintains classification capabili-

ties similar than the offered by 1-NN applied
over the whole data set.

• Stratified CHC offers the best results in all data

sets, maintaining its behaviour when we increase

the size of the data set (from 7200 instances in

Thyroid to 494022 instances in Kdd Cup�99).
• Our proposal offers the best balance among

accuracy, reduction rates, execution time and

resources needs in all data sets evaluated, out-
performing the non-evolutionary algorithms.

Therefore, as a final concluding remark, we con-

sider stratified strategy combined with CHC to be

the best mechanism in Prototype Selection in large

size data sets. It has become a powerful tool to face

to the scaling up problem. CHC selects the most rep-

resentative instances, satisfying both objectives:
high accuracy and reduction rates. Stratified strat-

egy reduces the search space so we can carry out the

evaluation of the algorithms in acceptable running

time decreasing the resources that it needs.
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